
RSV Data Review and COVID-19 Vaccine Business Update

October 20, 2022

Forward-Looking Statements and Other Notices

This presentation and our discussions during this conference call will include forward-looking statements that are subject to substantial risks and uncertainties, many of which are beyond our control, that could cause actual results to differ materially from those expressed or implied by such statements. We may include forward-looking statements about, among other topics, Pfizer's respiratory syncytial virus (RSV) portfolio, including Pfizer's RSV vaccine candidate (RSVpreF), the Pfizer-BioNTech COVID-19 Vaccine (BNT162b2) and other marketed or pipeline products (including qualitative assessments of available data, potential benefits, expectations for clinical trials, the anticipated timing of data readouts, regulatory submissions, regulatory approvals or authorizations or launches, potential efficacy of BNT162b2 against variants and variant specific vaccine development and anticipated manufacturing, distribution, supply, revenue contribution, commercial market, growth and performance); anticipated operating and financial performance; capital allocation objectives; future opportunities and strategies; and growth potential. Among other things, any statements regarding growth; the development or commercial potential of the product pipeline, inline products, product candidates and additional indications, including expected clinical trial protocols, the timing of the initiation and progress of clinical trials and data read-outs from trials; the timing for the submission of applications for and receipt of regulatory approvals; expected profile and product labeling; and expected breakthrough, best or first-in-class or blockbuster status of products are forward looking and are estimates that are subject to change and clinical trial and regulatory success. These statements are subject to risks, uncertainties and other factors that may cause actual results to differ materially from past results, future plans and projected future results.

Additional information regarding these and other factors affecting such statements can be found in Pfizer's Annual Report on Form 10-K for the fiscal year ended December 31, 2021 and its subsequent reports on Form 10-Q, including in the sections thereof captioned "Risk Factors" and "Forward-Looking Information and Factors That May Affect Future Results", as well as in our subsequent reports on Form 8-K, all of which are filed with the U.S. Securities and Exchange Commission and available at www.sec.gov and www.pfizer.com.

Potential risks and uncertainties also include the impact of, and delays caused by, COVID-19, including on sales and operations, and on employees, manufacturing, supply chain, marketing, research and development and clinical trials. The forward-looking statements in this presentation and made during our discussions speak only as of the original date of this presentation and we undertake no obligation to update or revise any of these statements. Cross-trial comparisons are not based on head-to-head studies and no direct comparisons can be made. This presentation is intended for the investor community only; it is not intended to promote the products referenced herein or otherwise influence healthcare prescribing decisions. All trademarks in this presentation are the property of their respective owners.

Emergency uses of the vaccines have not been approved or licensed by the FDA but have been authorized by the FDA under an Emergency Use Authorization (EUA) to prevent Coronavirus Disease 2019 (COVID-19) in individuals aged 6 months and older for BNT162b2 and 5 years and older for the Pfizer-BioNTech COVID-19 Vaccine, Bivalent. The emergency uses are only authorized for the duration of the declaration that circumstances exist justifying the authorization of emergency use of the medical product under Section 564(b)(1) of the FD&C Act unless the declaration is terminated or authorization revoked sooner. Please see EUA Fact Sheets at www.cvdvaccine-us.com.

Agenda

- Speaker Introductions
- > RSV RENOIR Phase 3 Data
- > RSV Commercial Considerations
- COVID Vaccine US Commercial Framework
- Question & Answer Session

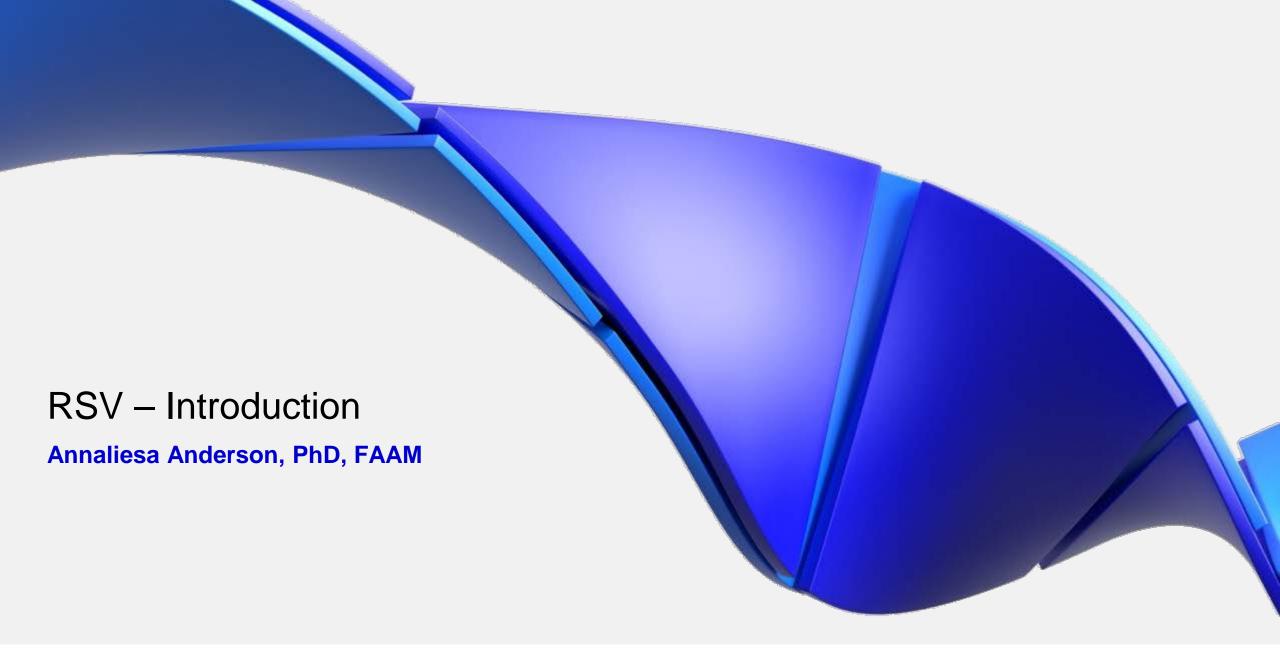
Speakers

Annaliesa Anderson, Ph.D., FAAM

SVP and CSO

Vaccine R&D

William Gruber, M.D., FAAP, FIDSA SVP, Vaccine Clinical R&D



Angela Lukin
Global Primary Care and US President

Christopher StevoSVP, Chief Investor Relations Officer

RSV Causes High Rates of Severe Disease

RSVpreF Vaccine Candidate Designed to Generate Potent RSV Neutralizing Antibodies

Targeted Indications

Maternal

Annual Global Burden: ~6.6M infants <6months sickened, ~45,000 deaths¹

Immunize pregnant women to prevent RSV-associated lower respiratory tract illness (LRTI) in infants from birth through 6 months of age

Older adult (≥65 years)

Annual U.S. Burden: ~177,000 hospitalized, ~14,000 deaths²

Active immunization to prevent RSVassociated LRTI in adults ≥60 years of age

Vaccine Candidate

Bivalent stabilized prefusion F

- Sequence based on contemporary RSV A and RSV B strains
- Elicited high neutralizing titers for both RSV A and RSV B in phase 1/2 studies³⁻⁵

Sources: 1. Li Y, et al (2022). Lancet 399(10340):2047-2064; 2. NFID RSV Report, Sep 2016; 3. Falsey A et al. J Infect Dis 2022;225:2056-2066; 4. Walsh E et al. J Infect Dis 2022;225:1357-1366; 5. Baber J et al. J Infect Dis 2022 May 11;jiac189. Abbreviations: RSV, respiratory syncytial virus.

Efficacy and Safety from Phase 3 Study of Bivalent Respiratory Syncytial Virus (RSVpreF) Vaccine Candidate in Older Adults

Edward E. Walsh,¹ Fernando Polack,² Agnieszka M. Zareba,³ Ann R. Falsey,¹ Gonzalo Pérez Marc,⁴ Qin Jiang,³ Katherine Schneider,⁵ David Cooper,⁵ Maria Maddalena Lino,⁶ Annaliesa S. Anderson,⁵ Kathrin U. Jansen,⁵ Kena A. Swanson,⁵ Alejandra Gurtman,⁵ William C. Gruber,⁵ and Beate Schmoele-Thoma⁷ for the RENOIR Clinical Trial Group

¹University of Rochester Medical Center, Rochester, NY; ²Fundacion INFANT, Buenos Aires, Argentina; ³Pfizer Inc, Collegeville, PA; ⁴iTrial-Hospital Militar Central, Buenos Aires, Argentina; ⁵Pfizer Inc, Pearl River, NY; ⁶Pfizer Srl, Milan, Italy; ⁷Pfizer Pharma GmbH, Berlin, Germany

IDWeek 2022, Washington, DC October 20th

RENOIR

(The RSV vaccine Efficacy study iN Older adults Immunized against RSV disease):

A Phase 3 Study to Evaluate the Efficacy, Immunogenicity, and Safety of Respiratory Syncytial Virus (RSV) Prefusion F Subunit Vaccine in Adults

Interim Analysis Read-Out

William Gruber, M.D., FAAP, FIDSA

Study Design of the Ongoing RENOIR Phase 3 Trial

240 Study Sites in 7 Countries

Argentina (

Finland •

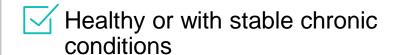
Netherlands ____

South Africa

United States

Targeted Enrollment

Up to 40,000 participants Adults ≥60 years old



Randomized 1:1 to receive RSVpreF 120 µg or placebo

Stratified by age group 60-69 years 70-79 years ≥80 years

Key Inclusion/Exclusion Criteria

Immunocompromised, persons with serious chronic disorders (e.g., metastatic cancer, ESRD)

First participants enrolled: August 31, 2021 (Northern Hemisphere) and November 23, 2021 (Southern Hemisphere)

Abbreviations: ESRD, end-stage renal disease; LRTI, lower respiratory tract illness; RSV, respiratory syncytial virus.

Phase 3 Study Objectives

Safety		 Describe the safety profile of RSVpreF Local reactions and systemic events within 7 days post-vaccination AEs through 1-month post-vaccination SAEs and NDCMCs throughout study
	Primary	 Prevention of RSV-LRTI in the 1st RSV season VE of 1st episode RSV-LRTI involving ≥ 2 signs/symptoms in 1st RSV season VE of 1st episode RSV-LRTI involving ≥ 3 signs/symptoms in 1st RSV season
Efficacy	Secondary	 Prevention of RSV-ARI in 1st season VE of 1st episode RSV-ARI in 1st season Prevention of RSV-sLRTI in the 1st RSV season Prevention of RSV-LRTI¹, RSV-ARI, RSV-sLRTI in 2nd RSV season Prevention of RSV-LRTI¹, RSV-ARI, RSV-sLRTI across 2 RSV seasons

^{1.} Includes RSV-LRTI involving ≥ 2 signs/symptoms and RSV-LRTI involving ≥ 3 signs/symptoms

Abbreviations: AE, adverse event; ARI, acute respiratory illness; LRTI, lower respiratory tract illness; NDCMC, newly diagnosed chronic medical condition; RSV, respiratory syncytial virus; SAE, serious adverse event; sLRTI, severe lower respiratory tract illness; VE, vaccine efficacy

Key Study Definitions

Weekly active surveillance for ARI symptoms Symptoms TRIGGER nasal swab and possibly a visit

Acute Respiratory Illness (ARI)

1 or more of these symptoms (new or worsened from baseline), lasting more than 1 day

Nasal Nasal Sore Sputum **Shortness** Wheezing Cough discharge congestion throat production of breath **Sputum Shortness** Wheezing **Tachypnea** Cough **Lower Respiratory** production of breath **Tract Illness (LRTI)**

ARI with ≥ 2 lower respiratory tract signs/symptoms (new or worsened)

Severe LRTI (sLRTI)

LRTI criteria plus at least 1 of the following:

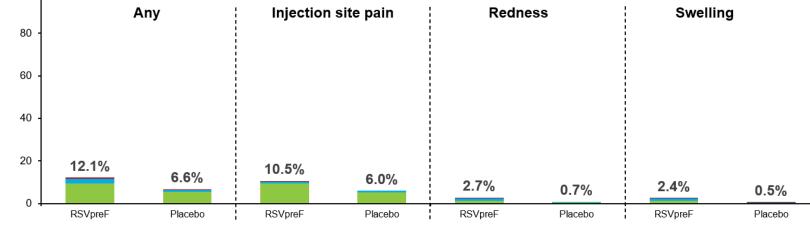
- Hospitalization due to RSV-LRTI
- New/increased oxygen supplementation
- New/increased mechanical ventilation (including CPAP)

RSV-ARI

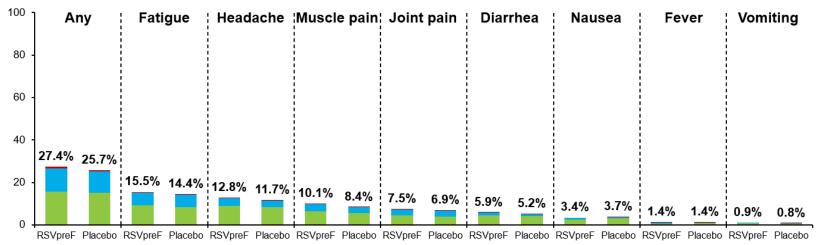
RSV-LRTI

Positive validated RT-PCR in central laboratory

RSV-sLRTI



RSVpreF Vaccine Candidate Was Well Tolerated


Systemic events similar between vaccine and placebo groups

Percentage of Participants with Reactogenicity Events by Maximum Severity Within 7 Days After Vaccination

Systemic Events

RSVpreF Vaccine Candidate: Well Tolerated with Favorable Safety Profile

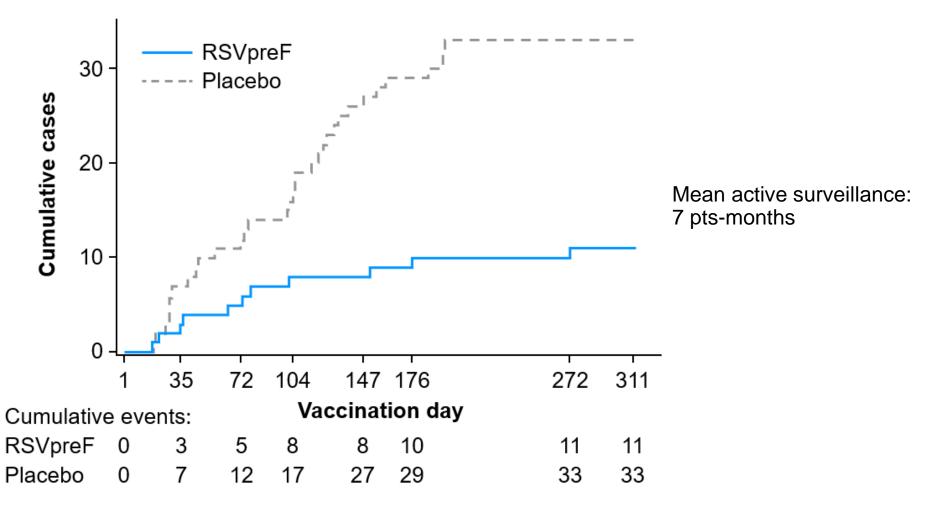
	RSVpreF 120 μg (N = 17,215)		Placebo (N = 17,069)	
Adverse Event Category	n (%)	(95% CI)	n (%)	(95% CI)
From Vaccination through 1-Month Follow-Up Visit				
Any Event	1,544 (9.0)	(8.5, 9.4)	1,453 (8.5)	(8.1, 8.9)
Related	239 (1.4)	(1.2, 1.6)	163 (1.0)	(0.8, 1.1)
Immediate AE ¹	37 (0.2)	(0.2, 0.3)	31 (0.2)	(0.1, 0.3)
Severe	65 (0.4)	(0.3, 0.5)	51 (0.3)	(0.2, 0.4)
Life-threatening	24 (0.1)	(0.1, 0.2)	19 (0.1)	(0.1, 0.2)
From Vaccination through 14Jul2022				
NDCMC	301 (1.7)	(1.6, 2.0)	313 (1.8)	(1.6, 2.0)
SAE	396 (2.3)	(2.1, 2.5)	387 (2.3)	(2.0, 2.5)
Related SAE	3 (<0.1)	(0.0, 0.1)	0	(0.0, 0.0)
AE leading to withdrawal	10 (<0.1)	(0.0, 0.1)	6 (<0.1)	(0.0, 0.1)
AE leading to death	52 (0.3)	(0.2, 0.4)	49 (0.3)	(0.2, 0.4)

Note: Any reactogenicity reported as adverse events (from either reactogenicity subset or non-reactogenicity subset) during the specified time period are included in this table

1. Immediate AE refers to an AE reported in the 30-minute post-vaccination observation period

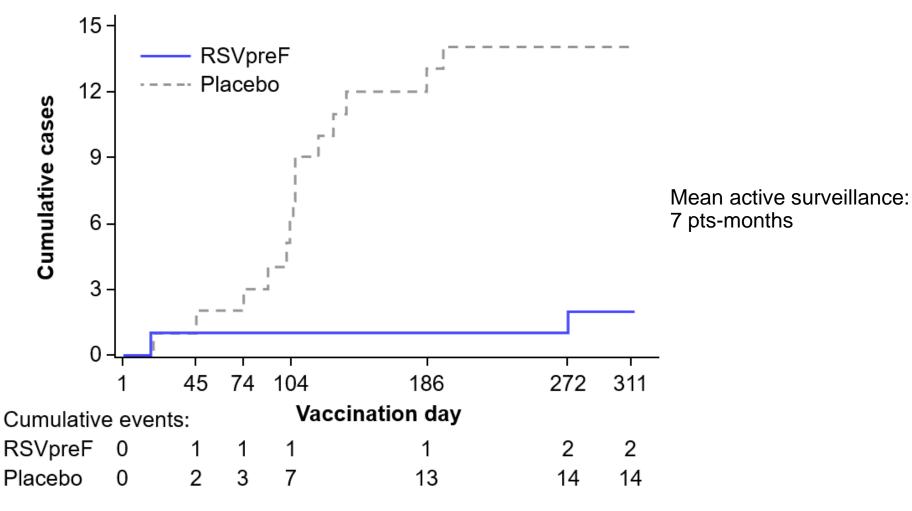
Abbreviations: AE, adverse event; NDCMC, newly diagnosed chronic medical condition; SAE, serious adverse event

Phase 3: RSVpreF Vaccine Candidate Was Highly Efficacious Against RSV-LRTI During the First Season

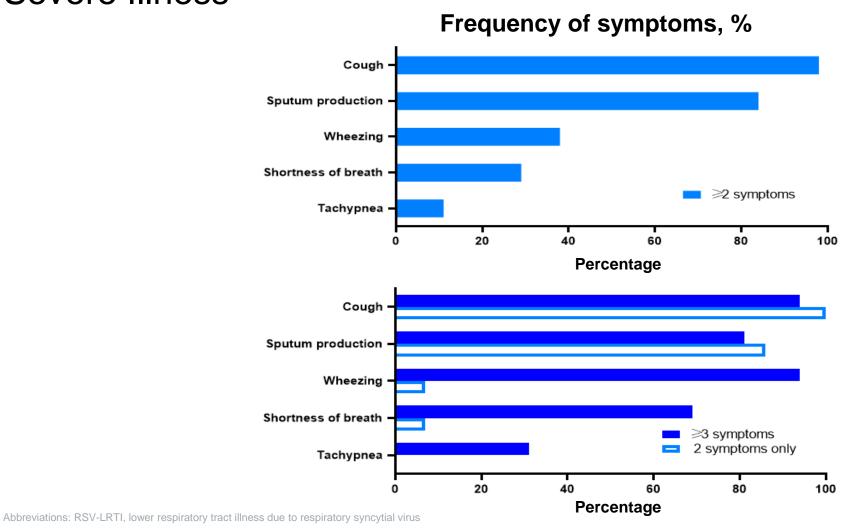

Both primary efficacy endpoints met prespecified licensure criteria

Increasing severity	Total cases ≥2 RSV-LRTI	Case split RSVpreF/Placebo	VE	96.66% CI ¹
	44	11/33	66.7%	(28.8%, 85.8%)
	Total cases ≥3 RSV-LRTI	Case split RSVpreF/Placebo	VE	96.66% CI ¹
	16	2/14	85.7%	(32.0%, 98.7%)

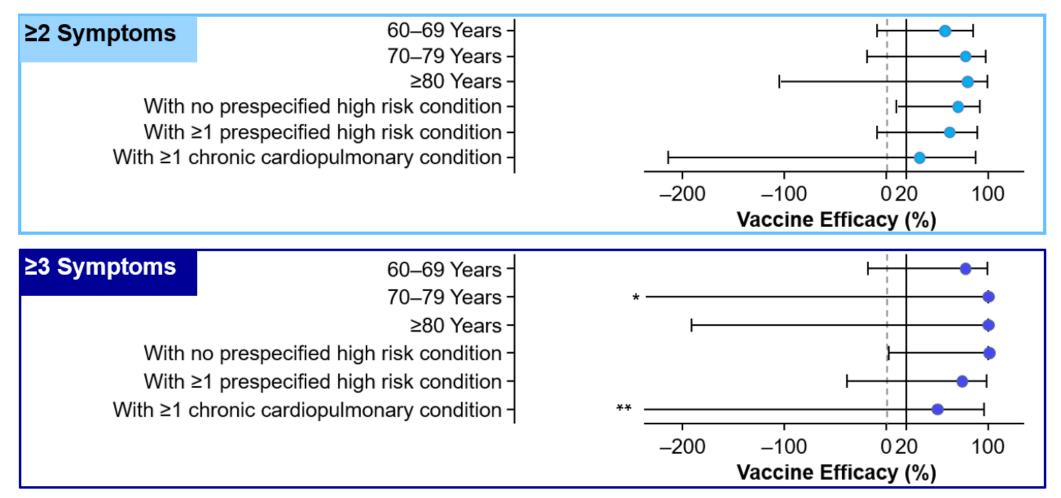
^{1.} CI obtained using the conditional exact test based on the binomial distribution of P, adjusted by Pocock error spending for interim analysis (alpha = 3.34%) Abbreviations: CI, confidence interval; RSV-LRTI, lower respiratory tract illness due to respiratory syncytial virus; VE, vaccine efficacy



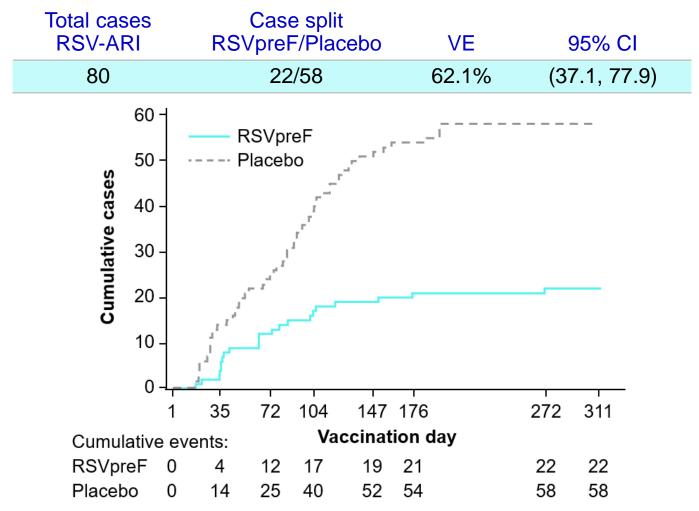
Phase 3: RSVpreF Vaccine Candidate Efficacy Against RSV-LRTI with ≥2 Symptoms



Phase 3: RSVpreF Vaccine Candidate Efficacy Against RSV-LRTI with ≥3 Symptoms


Phase 3: RSV-LRTI with ≥ 3 Signs/Symptoms Associated with More Severe Illness

Phase 3: Consistent Efficacy Observed Across Subgroup Analyses


Demographic Baseline Characteristics

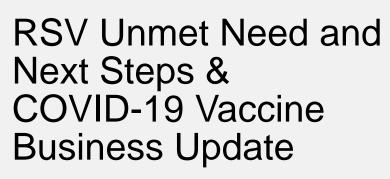
^{*} Lower bound = -573.8; ** Lower bound = -302.1

Phase 3: RSVpreF Vaccine Candidate Efficacy Against RSV-ARI

Abbreviations: ARI, acute respiratory illness; RSV, respiratory syncytial virus; VE, vaccine efficacy.

Interim Analysis Conclusions from Phase 3 Efficacy in Adults ≥60 Years of Age

Safety


- RSVpreF was well-tolerated with no safety concerns
- Local and systemic events were mostly mild to moderate and short lived

Efficacy

- RSVpreF was highly efficacious in reducing RSV-associated LRTI and ARI through the interim analysis
- Study is ongoing to assess duration of protection through second RSV season

Abbreviations: ARI, acute respiratory illness; LRTI, lower respiratory tract illness; RSV, respiratory syncytial virus.

Angela Lukin

Pfizer's RSV Pipeline Portfolio: Prevention & Treatment Approach

RSVpreF Vaccine Candidate

for PREVENTION*

Providing potential protection across generations

Bivalent stabilized prefusion F

- Composed of two RSVpreF proteins to optimize protection against RSV A & B strains
- High neutralizing titers for both RSV A and RSV B in Phase 1/2 studies¹⁻³

Maternal

Immunize pregnant women to prevent RSV-associated LRTI in infants from birth through 6 months

Older Adult

Active immunization to prevent RSV-associated LRTI in adults ≥ 60 years

Sisunatovir

for TREATMENT*

Potential treatment option for patients who become infected

Antiviral RSV F-protein inhibitor

- Potent activity against RSV with reduction in viral load
 & symptoms in RSV challenge study
- Currently evaluating optimal dose in Phase 2 study in children
- Targeting RSV disease in population at high risk for severe disease
- Potential key tool in treatment of RSV

*Subject to data and regulatory authorization/approval

Sources: 1Falsey A et al. *J Infect Dis* 2022;225:2056–2066; 2Walsh E et al. *J Infect Dis* 2022;225:1357–1366; 3Baber J et al. *J Infect Dis* 2022 May 11;jiac189. Abbreviations: RSV, respiratory syncytial virus. LRTI, lower respiratory tract infections

RSV: Significant Cause of Potentially Serious Respiratory Illness & Hospitalization in Older Adults

Common cause of acute respiratory illness in adults aged ≥65¹
Third behind COVID
& influenza

Worst outcomes in older adults² and those with high-risk conditions (e.g., heart or lung disease)³

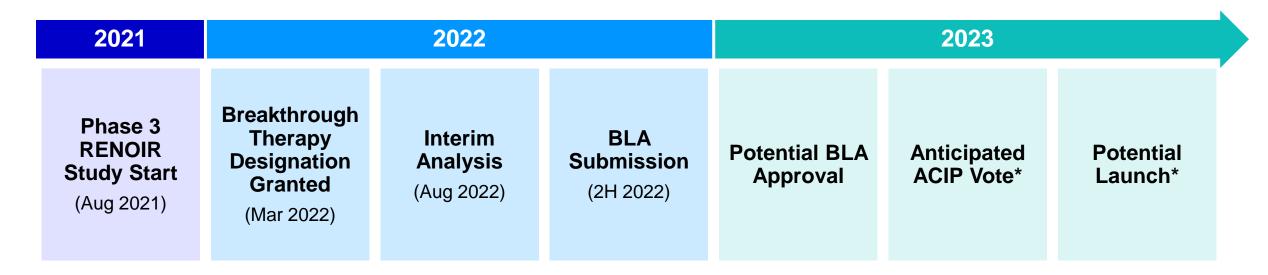
1.5M annual cases of RSV-ARI in adults aged ≥65 in industrialized countries⁴ Annual U.S. burden for

Annual U.S. burden for older adults (age ≥65): 177,000 hospitalizations & 14,000 deaths¹

Estimated annual cost among adults hospitalized with RSV infections in the U.S. is \$1.2 billion⁵

Currently No Vaccine to Help Prevent RSV; Supportive Care Treatment

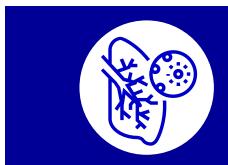
~61 Million Adults >65 Years Old^{6*} Will Be Eligible for RSV Vaccine** in U.S. Duration of Protection Will Be Key Input Into Defining Potential Revaccination Schedule


Note: RSV = respiratory syncytial virus.; ARI = acute respiratory infection

Source(s): 1https://www.nfid.org/wp-content/uploads/2019/08/rsv-report.pdf 2Falsey et al. 2000 3Mullooly et al. 2007 4Shi et al. 2019 5Choi et al. 2021 6UN World Population Prospects

^{*}Subject to ACIP recommendation; does not include other at-risk populations; **Subject to regulatory approval

RSV Older Adult: Phase 3 Study Start to Potential BLA Approval in <2 Years



- Under accelerated development timelines Phase 3 RENOIR study builds upon success of Ph1/2 and 2a studies for potential approval in 2023
- Importance of raising awareness about RSV, burden of disease, and potential risks to drive vaccine uptake following approval and launch

*Subject to regulatory approval

RSV Maternal: Significant Burden of Disease in Infants, with Hospitalizations Concentrated in First Year of Life

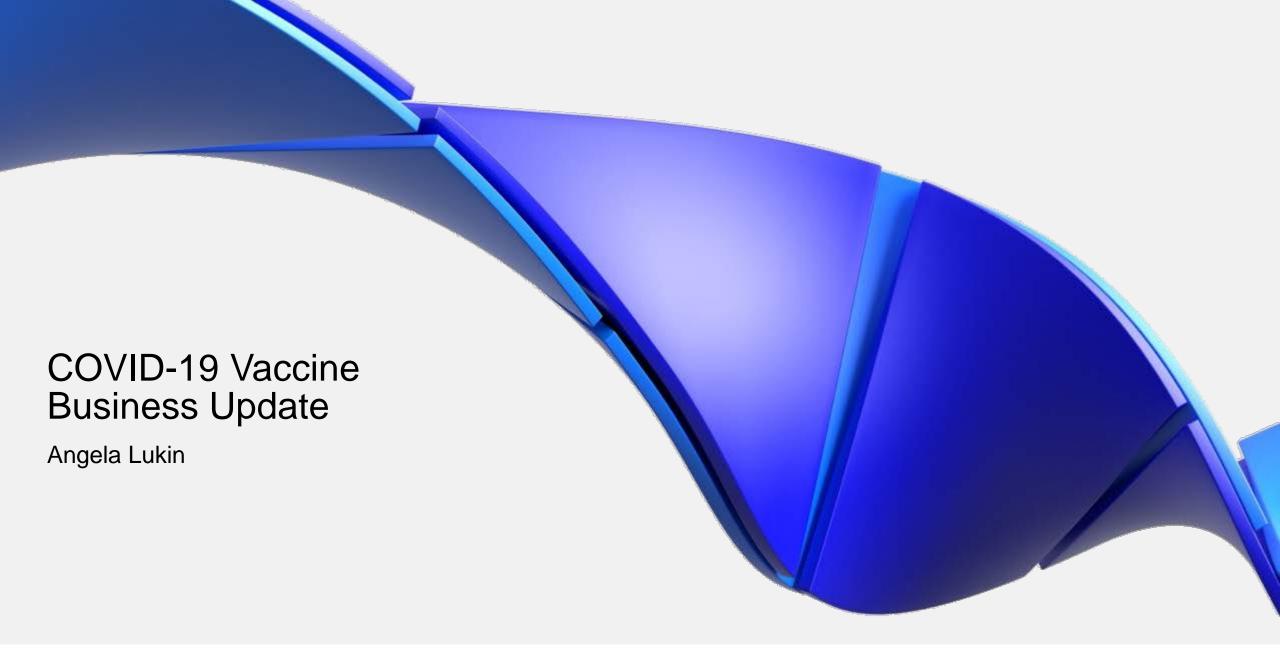
Leading cause of global infant respiratory disease^{1,2}

Infection can lead to respiratory distress and death^{1,3}

Globally, RSV sickens
~6.6M infants
<6 months and kills
~45K each year¹

Supportive care measures. Antibody prophylaxis only for highest risk infants³

Currently No Vaccine to Help Prevent RSV – Awaiting Data Readout


~3.5–3.7M Births in U.S. Each Year*

Pending Data & Subject to Regulatory Approval, Maternal Immunization Could Help Provide Protection from First Day of Life

^{1.} Li Y, et al (2022). Lancet 399(10340):2047-2064. 2. Obando-Pacheco P, Justicia-Grande AJ, Rivero-Calle I, et al. J Infect Dis. 2018;217(9):1356-1364. 3. American Academy of Pediatrics Bronchiolitis Guidelines Committee. Pediatrics. 2014;134(2):415-420

^{*}Adjusted to convert births into pregnancies

Transition to a Traditional Commercial Marketplace

Successful vaccination helps save lives, prevent hospitalizations and reduce healthcare costs

COVID-19 vaccination was linked to 650,000 fewer COVID hospitalizations in the U.S.¹

Approximately 235,000+ lives have been saved through COVID-19 vaccination in 2021²

Vaccination against COVID-19 was linked to 300,000 fewer deaths in the U.S.¹

Reductions in COVID-19 hospitalizations were associated with savings of more than \$16 billion in direct medical costs in the U.S.³

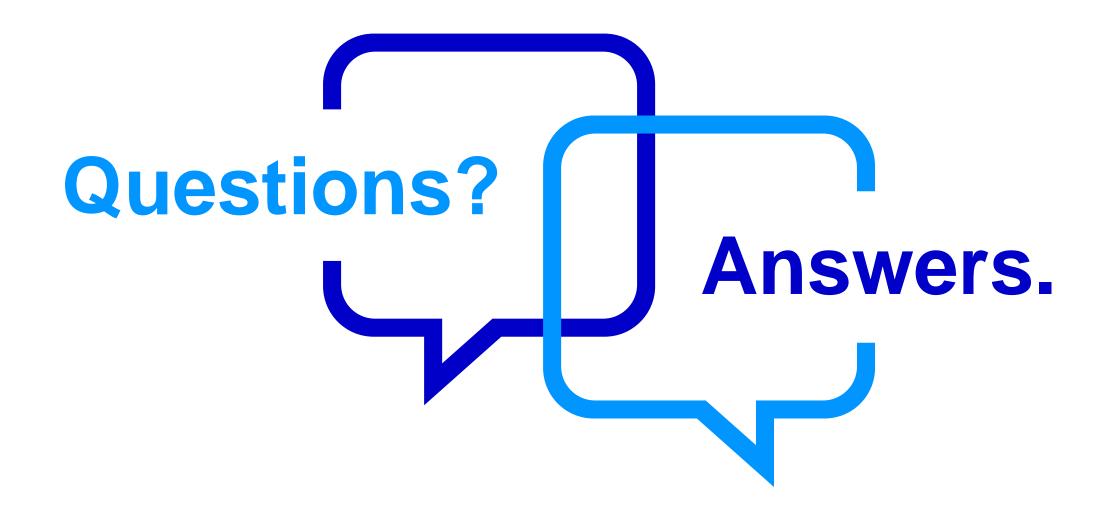
The commercial price point of our single-dose vial will reflect its cost-effectiveness, including the value it delivers to patients and society.

1. Health and Human Services. ASPE Report. 2022; 2. Steele et al. JAMA Netw Open. 2022;5(7); 3. Amin and Cox. Peterson-Kaiser Family Foundation. 2021

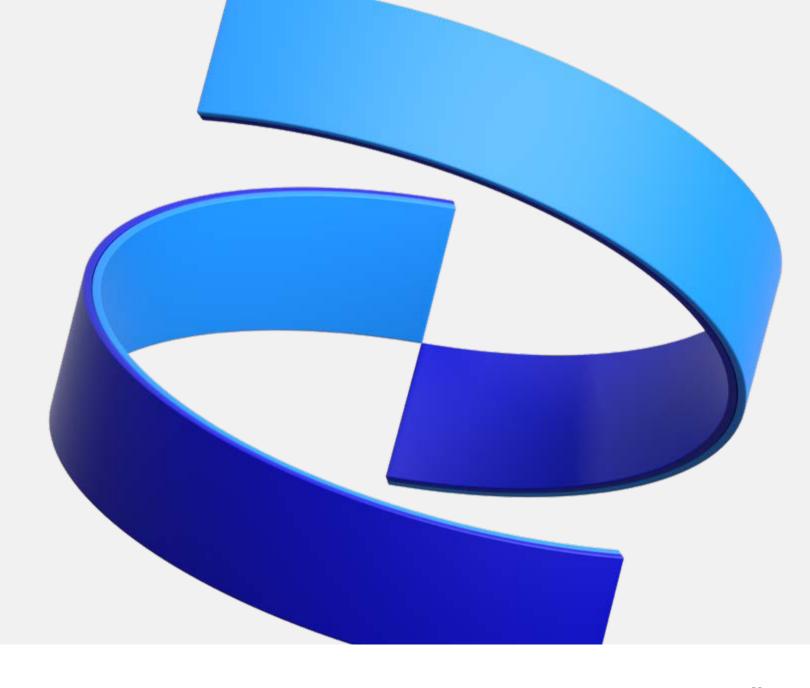
Pfizer Commercial Leadership

Decades of Commercial Launch Experience

Robust and Differentiated Contracting Models


Longstanding and Deep Relationships with Key Stakeholders

Proven and Reliable Manufacturing and Distribution



Leading Share of Voice Among Consumers

Thank You

Breakthroughs that change patients' lives